Manila Third Sewerage Project

EPA SWMM5 Training Course Module 2

Watershed/Water Quality Modeling 101

Henry Manguerra
GEF-MTSP Consultant
August 3-4, 2011
Model: Mathematical/Numerical Approximation of Reality

- Simulate key hydrologic, hydraulic, and pollutant transport processes
- Simulate cause-and-effect relationships
- Simulate what-if management scenarios
 - Evaluate options for managing sources of pollution to reduce water quality impacts
How good is your model prediction?

- Simple or complex situation
 - Waterbody type
 - Pollutants of interest
 - Sources of pollution
 - Spatial and temporal variability

- Model appropriateness and performance
 - Model selection
 - Model calibration

- Data availability and quality
 - Lumped vs. distributed model
 - Garbage in – Garbage out

- Types of answers needed and decisions to make
 - Screening/comparative, detailed planning, design, operation
Simple Situation Example

- 1-D River
- Continuous Point Source (e.g., STP effluent)
- Low Flow (Dry Season)
- Model is used to support STP effluent permit limit determination
A Little More Complex Situation Example

- 1-D River
- Urban Runoff Contribution to Pollution During Wet Weather
- Model to determine health advisories for contact recreation during or after a storm
Chesapeake Bay Watershed
- Large watershed covering DC and 56 states (VA, MD, PA, DE, NY, WV)
- Several receiving waterbodies of different types and complexities
- Multiple pollutant sources (point and nonpoint)
- Multiple pollutants (N, P, S)
- Multiple endpoints (DO, chlorophyll, SAV)
- Large spatial and temporal variability
- Model is used to develop the Chesapeake Bay TMDL
Model Selection

- “Make everything as simple as possible, but not simpler”, Albert Einstein
- Guidance Documents for Model Selection
 - EPA (2005), TMDL Model and Evaluation Needs
 - WERF (2001), Water Quality Models: A Survey and Assessment
 - EPA (1999), Compendium of Tools for Watershed Assessment and TMDL Development
WERF Model Selection Tool

Model Type
- Urban
- Field

Space-scale
- Point Sources
- Small Watershed
- Large Watershed
- Lumped
- Distributed

Time-scale
- Continuous
- Event

Pollutants
- Sediment
- Nutrients
- Chemicals

Level of Analysis
- Screening
- Detailed Planning

Source Release
- Constant
- Time-varying
- Single
- Multiple

Processes
- Transport
- Transformations

Input Aids
- GUls
- Linkage to GIS

Output Aids
- GUls
- Linkage to GIS

BMP Evaluation
- Simple
- Detailed

Level of Effort
- Low
- Medium
- High

Data Requirements
- Low
- Medium
- High

Modeler Expertise
- Low
- Medium
- High

Documentation
- Week
- Strong

Other Support
- Sponsor Support
- Workshops

Model Availability
- Public Domain
- Proprietary

Models Meeting Criteria
- BASINS (HSPF)
- HSPF
Model Calibration

- Model is an approximation of the natural system and its response to triggers/stressors

- Model calibration involves adjusting model parameter values within reason until the discrepancy between observed and modeled data are within acceptable levels
Model Calibration/Validation
Calibrated Model

“There is no single, accepted statistic or test that determines whether or not a model is valid”, EPA BASINS Training Course

Rough Calibration Targets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percent Difference Between Simulated and Observed Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very Good</td>
</tr>
<tr>
<td>Hydrology/Flow</td>
<td><10</td>
</tr>
<tr>
<td>Sediment</td>
<td><20</td>
</tr>
<tr>
<td>Water Temperature</td>
<td><7</td>
</tr>
<tr>
<td>Water Quality/Nutrients</td>
<td><15</td>
</tr>
<tr>
<td>Pesticides/Toxics</td>
<td><20</td>
</tr>
</tbody>
</table>

Source: Donigian (2000)

Comparison Techniques:
- Graphical (time series plots, scatter plots, CFDs)
- Statistical (error statistics, correlation, etc.)
Since water quantity drives water quality, it is important to calibrate the hydrologic and hydraulic model first before calibrating the water quality model.

Parameters
- Annual and monthly runoff volume
- Storm hydrographs
- Flow time series
- Flow frequency (flow duration) curves
Data Needs

- Climate
- Watershed/Receiving Water
- Pollution Sources (Point and Nonpoint)
- Observed Flow and Water Quality Monitoring Data
Climate Data

- Precipitation
- Evaporation
- Temperature
- Wind Speed
- Solar Radiation
- Cloud Cover

Source
- National Weather Stations (PAGASA)
Watershed/Receiving Water

- Watershed boundary
- Hydrography (stream/lake/bay locations, spatial extent, network; cross-sections, bathymetry)
- Land use (Aerial Photography, Satellite Imagery)
- Soil
- Topography (DEM, DRG)
- Political and administrative boundaries (LGU, Barangay)
- Infrastructure (roads, sewer network, parcels, ponds, flow control structures, best management practices, etc)

Source
- Various National Government Agencies
- Local Government Agencies
- Private Organizations
Pollution Sources

- Point Source Effluent Discharge Data
 - Domestic/Commercial Wastewater Treatment Plants, Industrial Treatment Plants
- Septic/On-site Treatment Systems
 - Illegal (straight pipe) connections
 - Leachate contribution (via surface runoff or percolation/groundwater)
- Human and Animal (livestock, pet, wildlife, fishponds) populations
- Landfill and Solid Waste Dump Sites
- Surface Runoff (urban, agricultural, forest, etc.)
- Atmospheric Deposition

Source
- Various National Government Agencies
- Local Government Agencies
- MWCI and MWSI
- Private Industries
Monitoring Data

- **Flow**
 - Daily and hourly time series
 - Surface water elevations and flow rating curve
 - Inflows and outflows (inter-basin water transfers, major withdrawals and discharges)
 - Flow rating curve and surface water elevations/depths

- **Water Quality**
 - Physical, chemical, biological data (in-stream, lake, bay)
 - Continuous or grab samples

Source
- Various National Government Agencies
- Local Government Agencies
Data Challenge – Availability and Accessibility

<table>
<thead>
<tr>
<th>Data</th>
<th>EMB</th>
<th>RBCO</th>
<th>LLDA</th>
<th>PRRC</th>
<th>MMDA</th>
<th>MWSS</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed boundary</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>DPWH</td>
</tr>
<tr>
<td>LGU boundary</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td>NSO, NAMRIA, LGU’s</td>
</tr>
<tr>
<td>Barangay boundary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stream, canal, estero map</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm drain map and outfall locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastewater and industrial facility location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concessionaires</td>
</tr>
<tr>
<td>Informal settlers location and population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LGU’s</td>
</tr>
<tr>
<td>Population by LGU and by barangay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NCSO</td>
</tr>
<tr>
<td>Locations of flow monitoring stations, flow and stage time series data, flow rating curves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DPWH</td>
</tr>
<tr>
<td>Locations of water quality monitoring stations and time series data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTSP-PMO and Concessionaires</td>
</tr>
<tr>
<td>Stream cross-sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DPWH</td>
</tr>
<tr>
<td>Rainfall data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAGASA</td>
</tr>
<tr>
<td>Digital Elevation Model/Contour Maps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LGU’s</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LGU’s</td>
</tr>
<tr>
<td>Aerial photograph/Satellite imagery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAMRIA</td>
</tr>
</tbody>
</table>
Data Challenge – Incomplete or Inadequate Detail

- Subwatershed/Catchment Boundaries

- High resolution DEMs/DRGs that can be used as a basis for delineating watersheds are not readily available

NOTE: This delineation is for illustration purposes only since the subcatchment boundaries were delineated arbitrarily.
Data Challenge – Data not available or incomplete

- Flow Time Series Data – not available for model calibration
 - Surrogate: Stage data and flow rating curve

- Water Quality Data
 - Very limited number of samples representing different flow situations (low flows, high flows, spill events, etc)
 - Flow rate was not measured during water quality sampling
 - Limited number of locations (e.g., one station in San Juan WQMA)
Data Challenge – Inconsistent data

Different Map Projections:
- UTM/WGS84
- UTM/Luzon–PRS ‘92
- UTM/Luzon Old Format

Spatial shift
Resolving Data Issues

- Watershed Boundary Delineation Team
- Partnership Information Center – Database Information System
- Strengthening and Harmonization of Surface Water Quality Monitoring Programs
- WQMAs – Coordination of watershed–based inter–jurisdictional activities
Questions?